Genauigkeit der Chatbot-Sätze
Zur Veranschaulichung dieses Konzepts wollen wir testen, ob die Chatbot das Konzept der Maschinenversicherung versteht. Um zu bestätigen, dass der Chatbot in der Lage ist, Sprache über Maschinenversicherungen zu erkennen, ohne sie mit anderer Sprache zu verwechseln, die als Lerndaten eingegeben wurde, müssen wir Tests (in Form von Phrasen) schreiben, die typische Merkmale der Sprache enthalten, und Berichte mit geeigneten Maßstäben für die Bewertung der Präzision des Chatbots definieren. Die Qualitätsmaßstäbe für den Chatbot können auf unterschiedliche Weise definiert werden. Aber insgesamt müssen Sie eine sehr wichtige Frage beantworten: Was meinen wir damit, dass der Chatbot lernt, die Klassifizierung von Phrasen zu verbessern?!
Die Antwort ist nicht so einfach. Nehmen wir an, wir haben die folgenden Kategorien für den Chatbot definiert:
- Maschinenversicherung
- Maschinentechnik
- Typ der Maschine
- Kosten des Kredits
Wenn der Nutzer den Satz "Ich möchte eine Versicherung für meine neue Maschine abschließen" eintippt, bedeutet das nicht, dass der Chatbot ihn nur einer Kategorie zuordnen wird. Der Klassifikator sollte einen Satz mit einem sehr großen "Wert" nur einer Kategorie zuordnen, aber dieser Satz kann auch anderen Kategorien mit einem kleinen Wert zugeordnet werden, z. B:
Klassifizierung Score | Kategorie Name |
---|---|
91% | Maschinenversicherung |
41% | Maschinentechnik |
30% | Typ der Maschine |
17% | Kosten des Kredits |
Der Ausdruck "Ich möchte eine Versicherung für meine neue Maschine abschließen" wurde als Maschinenversicherung mit einem Wert von 91% klassifiziert, während der Betrag in der Zeile darunter anzeigt, dass dieser Satz den Kosten für die Maschinenversicherung mit einem Wert von 41% entspricht. Die beiden anderen Kategorien haben einen noch kleineren Wert, der mit dem eingegebenen Satz übereinstimmt. Gehen wir davon aus, dass die Werte für die Zuordnung eines Satzes zu einer Kategorie im Intervall (0; 1) liegen.
Aus den oben gezeigten Ergebnissen lässt sich daher schließen, dass der Chatbot diesen Satz sicher klassifiziert, da die Differenz zwischen dem ersten gültigen Klassifizierungswert und dem zweiten gleich 50% ist.
Bei der Einstufung eines Satzes können unter anderem folgende Punkte Probleme verursachen
- ein zu geringer Unterschied zwischen den ersten beiden zugewiesenen Kategorien
- der Wert des richtigen Satzes ist zu niedrig
- gleichmäßige Verteilung der Kategorieklassifizierung, was bedeutet, dass der Chatbot nicht weiß, wie er einen Satz klassifizieren soll
Unter Testen eines Chatbots, ist man nicht nur in der Lage, ihn zu trainieren und sein Verständnis zu verbessern, sondern man kann auch einen systematischen Ansatz für den Umgang mit neuer Sprache entwickeln, der dazu führt, dass ein Chatbot auf einem fortgeschrittenen Niveau arbeitet und seine Verständnis- und Kommunikationsfähigkeiten verbessert.
Überprüfung der Genauigkeit der Formulierung des Chatbots Die Klassifizierung ist ein entscheidender Aspekt bei der Entwicklung der Fähigkeiten eines Chatbots und ermöglicht es ihm, wie beim Unterrichten von Kindern, selbständig zu lernen und seine Wissensbasis auszubauen.